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Rubin Observatory/LSST
● Rubin Observatory will conduct 

10 year Legacy Survey of Space 
and Time (LSST) 

● Two of the dark energy probes:
○ Weak lensing
○ large scale structure

LSST Observing Strategy (2018)



The problem: overlapping galaxy images (blending)
● LSST looks deeper (further back in time)
● More overlapping galaxies images

Shredded blends Unrecognized 
blends

Blending induced 
detections

Image from Sowmya Kamath’s thesis defense

● Blending can introduce bias in measurements for weak lensing 
and large scale structure
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Question: How to estimate bias introduced by 
blending?

Idea: Run detection 
pipeline on very large set of 
simulated images.

Problem: Requires many 
cpu hours to simulate and 
process all the images.

Our Idea: build a neural 
network to ‘emulate’ 
image simulation and 
detection pipeline.



“Emulation” Flow Chart

Galaxy blend 
parameters

(positions, fluxes, 
sizes, shapes of 

galaxies in a group)

Number of 
detections in 
each groupNeural 

Network
(training, testing)

Galaxy 
blend 

images
Simulation 

(Galsim)
Detection 

(SourceExtractor)

Process 

Catalog

images

My research: 
experiment with 

different models and 
training samples.

Goal: Input parameters for galaxy group and output result of detection algorithm
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Training Data
1. Generate parameters 
from uniform and normal 
distributions

2. Use GalSim to 
generate images. Add 
PSF and noise to 
images.

3. Run detection 
algorithm on images. 



Binary classification 
● Simple problem
● familiarize  myself with PyTorch
● Output deblended (good) or 

unrecognized blend (bad)
● 97% accuracy vanilla neural net
● 94% accuracy using only euclidean 

distance

Good!

Bad!



Multiclass classification 
● 1-5 possible galaxies
● Predicts number detected
● Simple architecture
● More complex problem
● 85% accuracy

65%
Accuracy (classical 
distance based 
algorithm)

True galaxies Detected galaxies

● Padding concern (neural net takes in 
constant dimension input)



Multiclass classification - recurrent neural net

● RNN solved padding 
concern

● Variable sized input
● 87% accuracy
● Model assumes 

sequential order Gal 2 
params

h0

output

Gal N 
params

Gal 1 
params

Linear layer...



Accuracy matrices 

RNN: 87% Vanilla NN: 85%

RNN predictions of detections vs detections Vanilla NN predictions of detections vs detections



Graph Neural Network - Classification
● Idea: model for neural net should reflect our 

knowledge about the problem
● Assumes permutation invariance

Flux, 
Size, 
ellipticity

Flux, 
Size, 
ellipticity

Flux, 
Size, 
ellipticity

Flux, 
Size, 
ellipticity

Flux, 
Size, 
ellipticity

weight=distance 
between centroids
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Next steps

● Continue work on the graph based neural network
● Ultimately use neural net to measure the bias of unrecognized blends on two 

point correlation functions
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