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Abstract

Despite the large number of American Sign Language
(ASL) speakers world wide, until recently, a lack of large
data sets resulted in minimal research focus on machine
learning algorithms for ASL translation. In the last few
years the creation of larger ASL data sets resulted in an
increase of papers on both character and word level ASL
translation. Our goal with our CS231N project is two fold.
First, we will create a basic ASL translation application that
provides ASL users with the ability to convert signs into
English using a pretrained Two-Stream Inflated 3D Con-
vNet (I3D) model. Second, we will develop our own ASL
world level interpretation model using transfer learning on
3DResNet model [15] described in ”SlowFast Networks for
Video Recognition” [4] as a primarily educational exer-
cise and compare the results to the I3D benchmark. In this
paper, we discuss the current state of the ASL translation
field, describe the data set we train our 3DResNet model on,
explore both the pretrained I3D model and our 3DResNet
model through data visualizations, and present our simple
ASL translator web app.

1. Introduction

There are somewhere between 250,000 and 500,00 ASL
speakers worldwide. ASL is a visual language that consists
of hand gestures, head movement, expression, and body lan-
guage. In ASL, many of the signs are iconic. For instance,
the sign for ”eat” is the movement of the fingers and thumb
from the dominate hand to the lips. ASL also has an al-
phabet and speakers can finger-spell words when icon-sign
approach is not feasible such as when signing names[9].

Many researchers have tried to solve sign language
recognition with approaches that use either RGB-D (D is
for an additional depth channel that is produced by devices
like Microsoft Kinect) data or raw RGB data. Additionally,
researchers have worked both on character-level and word-
level translation. One of the historical challenges with ASL
translation is the sparsity of data; however recent work has
introduced new larger data sets that, combined with trans-

Figure 1. Random Samples from the WLASL[12] dataset

fer learning, produce reasonably high accuracy for word
level recognition. For instance, a group[12] from The Aus-
tralian National University achieved 76% accuracy on label-
ing signs in 1000 classes using the ”top-5” accuracy metric
(if the correct word is in the top five classes the sample is
marked as classified correctly). Dongxu et al.[12] created
their own data-set of 21,083 videos and 119 signers. The
researchers then applied four different models to the ASL
translation task.

The model which preformed best was the I3D model
which is, as described by Dongxu et al., ”based on a 2DCon-
vNet inflation: filters and pooling kernels of very deep im-
age classification ConvNets are expanded into 3D, making
it possible to learn seamless spatio-temporal feature extrac-
tors from video while leveraging successful ImageNet ar-
chitecture designs and even their parameter”.

The I3D model often builds on top of pretrained image
classifiers, and then inflates their filters and pooling ker-



nels into a third dimension to allow for video classification
tasks. The I3D model builds off previous work on deep im-
age classification networks including Inception[3], VGG-
16[14], and ResNet[7]. The I3D model presented in the
paper[2] was our benchmark and also the model we used in
our web translation application.

The model we developed and trained was created by the
Facebook Research team as part of a Project titled ”Slow-
Fast Networks for Video Recognition” [4] and was based
on the 3DResNet[7] model. We applied transfer learning
to a model that had been pretrained on the Kinetics 400
dataset[11]. We train the last 5 layers of the 3DResNet net-
work on the WLASL100 dataset[12], which is a dataset of
the 100 most common ASL words.

For our model, the input is a RGB video of variable
length and size. In our prepossessing algorithm, we reduce
the spatial size of the video to 256x256 and reduce the spa-
tial dimension to 64 frames. We then use the 3DResNet
model trained on WLASL100[12] to output predictions of
the 100 most common ASL words. The dataset we train on
includes data on the top 2000 ASL words, but for proof of
concept and to make our model trainable we focused on just
the top 100.

2. Related Work
Dongxu et al.[12] used different machine learning

models based around word-level recognition of RGB video
input to interpret ASL. Because most existing datasets were
too small and specialized, Dongxu et al. made their own by
scraping online videos to create a dataset of 21,083 videos
of 119 signers. The videos are labeled with both temporal
and spatial bonding. The authors test four models. The first
takes RGB data as input, applies a CNN to extract spatial
features then feeds the result into an RNN to capture tem-
poral dependencies. The second model also relies directly
on RGB data but uses a 3D convolution that extracts both
spatial and temporal dependencies simultaneously with a
filter that spans both an area of pixels and multiple frames.
The third model first extracts the pose data and then passes
that data (55 body and hand points in R2) into a RNN.
The fourth and last model once again starts with the pose
data and uses a temporal graph neural network to extra the
human body dependencies before passing each output into
the next timesteps input. See Figure 1 for a representation
of the four models. The authors also augmented their data
through various linear transformations. When judging
their classification accuracy, they used only the top K
classification accuracy of all the sign instances where k =
1, 5, 10.[12]

Garcia et al.[5] created a real time interpreter that
can obtain user video, classify each frame of the video,
and then display the most likely word from each source.

Figure 2. The four models introduced by WLASL paper[12].

They point out that many past applications of machine
vision to ASL translation used 3D data. Rather than use
an RNN they classify each frame on its own and then
predict the likelihood of a string of characters based on
their ‘language model’. The authors used Caffe to test
and run their Convolutional Network. They trained their
model on roughly 2500 images cropped around hands. For
pre-processing the authors resized the images to 256x256
and then took random crops of 224x224 to further augment
the data set. They did center the data, but did not divide by
the standard deviation because the RGB data was already in
the finite range of 0 to 255. They also mixed in horizontal
flips to augment the data set with left/right hand equivalents
of each frame. For measurements they used the top-5
accuracy.

Vaezi Joze et al.[10] propose a large data set of 25,000
annotated videos, surpassing the size of data sets currently
available for the ASL learning task. The videos in the
dataset were taken under unconstrained real-life recording
conditions with the help of more than 200 signers which
provides a great variation in background and lighting. The
dataset covers a large class count of 1000 signs and includes
data points from various dialects. The diversity and varia-
tion in the dataset means that it can be used to train models
that perform well in realistic conditions. The labels for the
videos were obtained from subtitles and captions. The pro-
posed method uses the I3D architecture on the videos for
ASL recognition. They used the bounding boxes method
in addition to face recognition to track the signer. To make
sure that the training is signer independent, they divided the
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Figure 3. I3d[2] Model Benchmark model used by our web app
translator.

dataset into 80%, 10%, and 10% for train, validation, and
test respectively, such that the videos in each set are from
different signers. They made 4 subsets available, where
each one includes the n most frequent words for n = 100,
200, 500, 1000. They chose the top-5 accuracy as a met-
ric due to context related ambiguity that is characteristic of
languages.

3. Methods

3.1. Benchmark Pretrained I3D Method

For our benchmark accuracy we used a pretrained I3D
model on the WLASL2000 dataset[12]. Dongxu et al com-
pared different methods in their papers (See Figure 2 for
the models they tested) and the I3D model preformed the
best. The I3D model was originally introduced in ”quo
Vadis, Action Recognition? A New Model and the Kinetics
Dataset” [2] published in 2018. The ASL I3D model uses
pre-trained weights from the original I3D paper. See Figure
3 for a visualization of the I3D architecture.

The I3D model inflates trained 2D ConvNets to handle
the temporal dimension of video. The model bootstraps the
3D filters from 2D filters. One bootstrap strategy is to cre-
ate ”boring” videos by simply duplicating a single images
multiple times into a sequence. Then the 3D filters can be
implicitly trained on a 2D images dataset set such as Ima-
geNet. The expected output for the newly created 3DCon-
vNet is the image class for the single image which can be
achieved by making each slice of the 3D filter equal to the
2D filter divided by the length of the 3D filter. Now, the 3D
network would provide the same classification for a video
created by the duplication of stills as the original 2D Con-
vNet would have produced for the single 2D image.

The I3D model has four max-pooling layers with stride
of 2 and a final average pooling layer. In addition, each of
the inception[3] modules have a max-pooling layer. When

Figure 4. Architecture Representation of 3DResNet[4]

experimenting with the model, the I3D authors found that it
was helpful to not perform max pooling along the temporal
dimension in the first two layers. From a theory standpoint,
depending on frame rate and the speed of the action, pooling
temporal layers can result in conflating separate objects that
are only separated by time and not space.

After each convolution layer, the I3D model has a batch-
normalization layer and a ReLU activation function. When
training the original model, the researchers used stochastic
gradient decent (SGD) with momentum equal to 0.9.

3.2. 3D ResNet

The 3DResNet model we implemented (slow r50) was
developed by Facebook AI Research (FAIR) as part of a
project called ”SlowFast Networks for Video Recognition”
[4]. The general ResNet framework originated from a paper
released in 2018 titled ”A Closer Look at Spatiotemporal
Convolutions for Action Recognition” [7].

The SlowFast Network has two pathways for the input
video. There is a Slow pathway that only captures a few
frames along the temporal axis by using a temporal stride
τ . The model trained on the Kinetics 400 used τ = 16 for
the slow pathway so 2 frames sampled per second for a 30-
fps video. The Slow pathway captures the spatial semantics
of the video. The Fast pathway uses a higher temporal res-
olution with τ = 2. To make the Fast pathway lightweight,
it uses a lower channel capacity. The Fast pathway is meant
to capture motion information from the fine temporal reso-
lution.

The 3DResNet model is pretrained on the Kinetics 400
dataset[11]. The model consists of 18 blocks where each
block consists of 3 to 5 layers. The first Block is the ResNet-
BasicStem which consists of a 3D convolution layer fol-
lowed by a 3D batch normalization, a ReLu and a 3D Max-
Pool layer. See Figure 4 for a representation of the lay-
ers used in 3D ResNet. The next 16 blocks are ResBlocks
which are each made out of a 3D convolution layer, a 3D
Batch normalization, and a ReLU layer. The last block is
the ResNetBasicHead which consists of a 3D average pool-
ing layer, a dropout layer, a Linear layer, a 3D Adaptive
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Figure 5. Accuracy of the baseline I3D model word by word on
the top 50 words in the WLASL100 dataset.

Average Pooling layer, and Softmax at the end.
We applied transfer learning to slow r50 by using the

pretrained weights on the first 17 blocks and training the
last block (the ResNetBasicHead) on the WLASL100. For
training, we used a learning rate of 10−2 and a weight de-
cay of 10−4. We used the cross entropy function for the loss
and we used the recommended[4] optimizer which is SGD
with momentum 0.9.

4. Dataset and Features
The dataset we use was created by Researchers from

The Australian National University [12]. There are a to-
tal of 21,043 video samples with each video ranging from
0.36 to 8.12 seconds in length with an average length of
2.41 seconds. The glosses were gathered from 20 differ-
ent websites of which many were educational sign lan-
guage websites. See Figure 1 for a few randomly sampled
frames from the WLASL dataset for the top 5 most com-
mon words in the dataset. There are four subsets of the
whole dataset: WLASL 100, WLASL 300, WLASL1000,
and WLASL2000. Each dataset selects the videos with the
top-K glosses. In other words, WLASL100 contains all the
videos labeled one of the 100 most frequent words. In the
WLASL2000 dataset, each gloss has on average 10.5 sam-
ples which is quite large by ASL dataset standards. For
the WLASL100 dataset which we ultimately used for both
training the ResNet 3D model and testing the I3D model,
there were 20.3 samples per gloss.

All of the videos contain solely RGB data. When pro-
cessing the raw video data to test the I3D model, we
scaled[1] and cropped the inputs to achieve a frame shape
of (3, 224, 224)[6]. Additionally we sample 64 frames at
random to enforce a consistent temporal length. To train
the 3DResnet, the videos are padded and center cropped to
have a unified frame shape of (3, 256, 256). We also sample
64 frames for this model.

The dataset also included a variety of annotations which
our model mostly did not make use of. For instance, in

Figure 6. 3D Resnet Validation Set Accuracy

the meta data of each video the researchers included body
bounding boxes, signer diversity scores, and dialectic vari-
ation annotations. The dialectic annotations were hand la-
beled and used to avoid separate hand signals for the same
word in the dataset. We used the signer diversity score to
guarantee that the signers in the validation and training data
were distinct people to get a validation accuracy that is rep-
resentative of the real world performance of our model.

Our split between train, validation, and test set was 80%,
10%, 10% respectively.

5. Experiments
5.1. I3D Baseline

We tested the I3D model pretrained on the full dataset
(2000 most frequent words in ASL) and a subset of the
dataset of the 100 most frequent words. As an accuracy
metric, we used the top-k accuracy method because many
ASL words are signed in a physically similar way and are
primarily differentiated by context.

On the WLAS2000 dataset, we got 64.32%, 55.81%, and
31.99% for the top-10, top-5, and top-1 accuracy respec-
tively. While On the WLASL100 dataset, we got 90.31%,
84.10%, and 65.89% for the top-10, top-5, and top-1 ac-
curacy respectively. See Figure 5 for a break down of the
accuracy that we got on the WLASL100 by word.

To gain a better graphical understanding of the I3D
model, we created a matrix of the original video at random
time steps and filter numbers for the first three convolutions.
The first observation is that each filter decreases in resolu-
tion. Right before the last linear layer the visualizations
of the filter have lost all human visual significance. How-
ever, in the first three convolution layers (See Figures 7 and
8) the original image is not challenging to pick up and we
can observe the some filters focus on hands, background,
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Figure 7. The values of the tensors[13] after being passed through
the first 3D convolution in the I3D model with filters of size 7x7x7.

Figure 8. The tensors[13] after passing through the third convolu-
tion in the I3D model with a 1by1by1 filter size. We can see that
the model is starting to pick up on edge detection with an emphasis
on hands.

face, or body. Furthermore, we observe significant edge de-
tection occurring in the second and third convolution layer.
Furthermore, by the third convolution layer we can observe
that the the majority of the filters are no longer focused on
the the background as shown by how much darker the back-
ground is in Figure 8 than Figure 7.

To gain a better understanding of the failure points of
the model, we graphed the accuracy per word. In the top
50 words, the three worse performers are ”before”, ”later”,
and ”bowling”. A commonality with all these words are that
the sign primarily originates with wrist gyration and finger
movement rather than arm movement.

Figure 9. After a sample image is passed through the first layer, ti-
tled the ResNetBasicStem layer, some of the output channels focus
on background while others focus on the body and face.

5.2. ResNet 3D

Unlike our benchmark I3D model, the slow r50 model
was trained on non-ASL data. We trained our first itera-
tion of the slow r50 for eight epochs before the accuracy
started to plateau. After eight epochs, we achieved 21%,
49.1%, and 63.9% for top-1, top-5, and top-10 accuracy re-
spectively on the WLASL100 dataset. See Figure 6 for a
visualization[8] of the accuracy during training.

Similar to the I3D model, when we ran a test video
through the nine layers of the model (where each layer in
turn is composed of multiple convolutions, normalization,
and pools) we noticed that the first layer, see Figure 9, has
relatively broad focus with some filters emphasizing the
face while other emphasize the hands or the background.
After the trial video is passed through the second layer, see
Figure 10, the model starts picking up on fine detail with an
emphasis on edges.

In addition to passing a test image through the first two
layers of the nine layer 3DResNet model, we also graphed
two of the 3D convolution filters in the first layer. see Fig-
ures 11 and 12. They appear similar to the filters of general
image recognition models where the initial filters are larger
to learn broad detail and subsequent filters learn finer detail.

6. Conclusion

Over the course of this report, we evaluated the pre-
trained I3D model, used transfer learning to train our own
3DResNet model, and implemented a simple web interface
to act as an ASL translator. See Figure 13 for a screenshot
of our current UI along with the top five predicted words.

5



Figure 10. After the test image passes through two layers (each
of which consist of multiple convolutions) it is apparent that the
model begins to pick up finer details.

Figure 11. Pictured are the filters in the the first 3D convolutional
layer

7. Future Work

The 3DResNet model that we trained did not come prac-
tically close to the I3D benchmark. The top-5 accuracy
for the 3DResNet model was 49.1% as compared to 84.1%
for the benchmark I3D. The next step would be to experi-
ment with our 3DResNet model to achieve higher accuracy
closer to the Benchmark. In addition to improving word-
classification, it would be interesting to experiment with
continuous ASL translation. Possibly the task could be di-
vided into identifying the start and end of distinct signs and
then identifying those signs.

Figure 12. Pictured here are a random slices of the 3x3x3 convo-
lution filters present in the first layer.

Figure 13. Our simple web app records a user video and outputs
the top five word predictions by the I3D model. In this frame, the
user is attempting to sign the word ’eat’

8. Appendix A: Web Application

One of our goals going into the project, was not only
to experiment with ASl models but also to create a usable
ASL translation web application. To do this, we developed
a simple front-end using React where the user can create a
video of themselves signing a single word. Then (after a
pause of about three seconds while our Flask backend con-
siders its options) the top five most likely words pop up.
The Flask back-end is currently run on Google Colab and
receives the video as a chunk of data in a POST request.
The back-end processes the video into a spatial dimension
of 224x224 and a temporal dimensions of 64 frames before
applying the model to the video and returning the top five
results.

This Web App serves as a viable proof of concept for
something more complex like a live ASL translator that
could take in a continuous stream of signed inputs.
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Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature,
585:357–362, 2020. 4

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 2, 3

[8] John D Hunter. Matplotlib: A 2d graphics environment.
Computing in science & engineering, 9(3):90–95, 2007. 5

[9] Michelle Jay. American sign language: Start asl, Feb 2021.
1

[10] Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A large-
scale data set and benchmark for understanding american
sign language, 2019. 2

[11] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset, 2017. 2, 3

[12] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li.
Word-level deep sign language recognition from video: A
new large-scale dataset and methods comparison. pages
1459–1469, 2020. 1, 2, 3, 4

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 5

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015.
Visual Geometry Group, Department of Engineering Sci-
ence, University of Oxford. 2

[15] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition, 2018. 1

7


